If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+16x=144
We move all terms to the left:
24x^2+16x-(144)=0
a = 24; b = 16; c = -144;
Δ = b2-4ac
Δ = 162-4·24·(-144)
Δ = 14080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14080}=\sqrt{256*55}=\sqrt{256}*\sqrt{55}=16\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{55}}{2*24}=\frac{-16-16\sqrt{55}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{55}}{2*24}=\frac{-16+16\sqrt{55}}{48} $
| |3x+9|+6=6 | | 9p+7=(-63)+4p | | 4x=8;x | | 45+x=80 | | y+5/9=2/3 | | 0.0016=5^x | | 35+x=125 | | 1/3(x-15)=x+15 | | (3x)(x^2=4x-15) | | 2w-(3+10w)=-3 | | 294-x=182 | | ⅓(x-15)=x+15 | | 8^-6n=69 | | X/2+3x/5=33 | | 32^3n=4 | | 8x+5=820 | | 3^-3b=27 | | 5+4=9x | | −3x^2−12x+15=0 | | 6x-7=9-2× | | 2^2p=1 | | x+8/2=12 | | -5p+72=91 | | 5a-4÷2=8 | | 2x+6+5x+8+54=180 | | 6x+2+20=90 | | x-73=196 | | 5x+3x=5x+18x= | | 2k^2+15k=0 | | 4+5v=-16 | | y/2-8=3 | | 11=2+y/3 |